

Personal Rapid Transit

Innovative Transportation Technology

Overview and State of the Industry

February 14, 2006

Paul Hoffman hoffman_paul@bah.com 703-377-0496

Agenda

- Background and Need
- **PRT Technology Overview and Features**
- PRT History and Vendor Status
- Cost and Performance Comparisons
- Options For Development
- The Network Business Model

Background

- Congestion in the U.S. is a significant problem affecting:
 - Economic viability of urban regions
 - Quality of life
 - Environment
- National metrics of congestion*:
 - 2.3 billion annual gallons of fuel wasted
 - \$63 billion in financial costs
 - Average annual delay per person
 - 93 hours in Los Angeles
 - 69 hours in Washington DC
 - 49 hours in NY/NJ
 - 47 hours US average
- Congestion is only getting worse and has increased an average 9% per year since 1982

^{*}Source TTI 2005 Urban Mobility Study

Background

Expansion of current modes is limited by:

- High costs
- Land availability
- Impact and public acceptance

Highways

- Expensive in urban areas
- Limited land availability

Metro/Commuter Rail

Expensive in urban areas

Light Rail

High service factor but limited by surface traffic unless separated at higher cost

Bus

Low cost but limited by surface traffic and slower trip times

Needs and Features – The Genesis of PRT

Engineered System

PRT has been engineered as an innovative and new system to address the needs of urban transportation

Need	Design Feature and Goal		
■ Faster service	✓ Non-stop, on-demand service		
Lower operating costs	✓ Increased levels of automation		
	✓ Reduced energy use		
Lower capital costs	✓ Reduced size of infrastructure for stations, track and right- of-way		
Improve integration	✓ Smaller footprint and tighter turning radius to integrate into dense urban environments		
Reduced congestion	✓ Faster and personalized service to attract private automobile users		
Reduced pollution	✓ Electric vehicles		
Reduced energy use	✓ Small, lightweight vehicles		
	✓ Non-stop, on demand service to eliminate unnecessary vehicle movements		
Increased safety and security	✓ Distributed demand and continuous flow to eliminate crowds		
	✓ Advanced monitoring and control		

Technology Overview – PRT Fundamentals

- On-demand, origin-to-destination service
- Small, automated vehicles
- Small, exclusive use guideways
- Off-line stations
- Network of connected guideways
- Combines elements of automotive, computer, network and transit technologies
- Uses current state-of-the-art technologies including:
 - Advanced propulsion systems
 - On-board switching and guidance
 - High speed controls and communication
 - Lightweight advanced materials

PRT represents a new paradigm for urban transportation

Components of PRT

■ Small, fully automated vehicles

■ Small, exclusive use guideways

Small PRT Guideway

Large Conventional Guideway

Components of PRT

Off-line stations

Networks supporting distributed demand and line haul

PRT Automation and Simulation

- PRT requires a new level of automation and communication to provide:
 - Short headway between vehicles for adequate capacity
 - Management of occupied and empty vehicles throughout the network
 - High levels of safety and reliability
 - Scalability from small initial networks to larger expanded networks
- This level of technology is beyond the current state-of-the-art in transit but within other industries
- Development and proof of operation in a safe and reliable manner is critical to the success of a PRT system
- A simulation example of an urban network

Potential PRT Applications

Urbanized Area:

- Central Business District circulator
- High density area connector
- Feeder to existing transit stations/hubs
- Connector/distributor from satellite parking facilities
- Potential alternative to LRT, BRT or Monorail development or expansion
- Urban goods and light freight movement

Activity Center/Campus:

- Circulator within entertainment/tourism district
- Circulator within/between college or business campuses
- Airport landside and airside access
- Feeder to existing transit stations/hubs
- Connector/distributor from satellite parking facilities

Examples of Potential PRT Applications in New Jersey

Urbanized Area:

Harrison Hoboken

Jersey City
Long Branch

Morristown Newark

Trenton

Activity Center/Campus:

- Meadowlands Sports Complex and Entertainment District
- Atlantic City
- New Brunswick Rutgers University
- Suburban employment nodes:
 - Bridgewater-Raritan-Somerville
 - Cherry Hill
 - Metropark
 - Parsippany Troy Hills
 - Piscataway
 - Secaucus
 - Woodbridge

Potential PRT Application – Meadowlands

Potential Features:

- Connect major venues within the complex
- Circulate and distribute visitors within the complex
- Provide feeder service to future commuter and light rail stations/stops
- Provide access to remote areas including satellite parking
- Accommodate future expansion to adjacent areas
- Could be a potential alternative to future light-rail extension

Potential Benefits:

- Improve flow and movement of visitors within the complex
- Allow increased density of development and replacement of parking
- Increase transit access and usage to neighboring areas
- Reduce traffic congestion on roadways adjacent to and within complex
- Higher level of service with lower capital and operating costs than alternative options

Potential PRT Application – Atlantic City

Potential Features:

- Connect major hotels, casinos, convention center, and parking areas
- Connect to rail line
- Circulate and distribute visitors within the area
- Improve access to remote areas including satellite parking
- Provide potential for goods and baggage distribution

Potential Benefits:

- Improved flow and movement within the area
- Increase transit access and usage to neighboring areas
- Allow increased density of development and replacement of parking
- Increased attractiveness and prestige to the area
- Reduce traffic congestion on roadways throughout the area
- Can accommodate future expansion to adjacent neighborhoods and other areas

Potential PRT Application - Tysons Corner Virginia

Potential Features:

- Connect major businesses, hotels, shopping malls, retail and restaurants
- Circulate and distribute workers and visitors within the area
- Alternative to Metrorail extension
- Increased number of stations over Metrorail
- Connect to Metrorail lines on either side of the area

Potential Benefits:

- Improved traffic flow and movement within the area
- Increase transit access and usage to neighboring areas
- Allow increased density of development and replacement of parking
- Increased attractiveness and prestige to the area
- Reduce traffic congestion on roadways throughout the area
- Allow proposed Metrorail expansion to reduce costs and disruption by avoiding major construction in dense environment

A Brief History of PRT

- Concept originally developed in the 1950's
- World-wide development and multiple prototype systems under Federal government funding in the 1970's
- Four major international PRT conferences
 - 1972, 1973, 1975, 1996
- Large scale research and development programs conducted
 - Aerospace Corp, Cabintaxi, CVS, Aramis, Morgantown, RTA/Raytheon
- Major technology assessments conducted in
 - 1975, 1980, 1989, 2003
- One "semi"-PRT system in operation at Morgantown, WV
- Numerous major studies conducted around the world supporting research, engineering and application analysis of PRT
- Over 120 Automated People Mover (APM) applications currently operating world wide incorporating many PRT components

Morgantown System (1970 - present)

- US federally funded program with short schedule and limited R&D effort
- System designed and built by Boeing:
 - Larger group vehicles requiring large guideway with a large physical footprint
 - Expensive to construct and maintain due to custom design and components
- Continuous operation since 1972
 - 2 million passengers per year, 63 million total
 - 30,000 passengers per peak day
 - 98% reliability
 - 8.7 lane miles, 74 vehicles
- Demonstrates the successful use of several PRT concepts, including:
 - Off-line stations
 - Automatic control systems
 - High level of reliability
 - Low operating costs

Raytheon/Chicago RTA Program (1990's)

- Program funded through \$50M public/private partnership
 - Joint development and intellectual capital
 - Shared revenue/royalties
- Initial designs included small vehicle and guideway but evolved to a larger vehicle and guideway
- Test track demonstrated the successful use of full automatic control and off-line stations
- Program cancelled in 1999 due to changes in political leadership and non-competitive system features:
 - Large vehicles and guideways resulted in high capital costs, greater visual impact, with only moderate performance
- Program failed to learn and adapt critical design and economic lessons from past efforts

Results from Past Application Studies

- Activity center circulation and connector to airport and regional rail
- Significant local support for system and technology
- 9% reduction in overall surface traffic in study area
- Study recommended to establish public/private partnership for DBOM when technology is available

Cincinnati Central Area Loop

- Downtown circulator and cross-river connector
- 3-5 times increased in ridership of alternative modes
- Project 17,000-32,000 trips/day
- Significant support of PRT by business and developer community
- PRT desired but rejected due to lack of existing prototype

Indianapolis Downtown study

- 33% projected mode share for area-wide system
- Project halted due to lack of technology and political support

Results from Past Application Studies

- Large shopping area seeking to reduce congestion, improve travel time and connect with regional rail
- PRT network selected with 7.5 miles of guideway and 12 stations
- 26% reduction in average travel time
- 300% increase in ridership over bus
- 17% increase in overall area demand due to improved service
- 8% reduction in road traffic
- 35% of capital and 60% of operating cost for comparable fixed guideway alternatives

EDICT - Cardiff Wales

- Redevelopment of docklands next to city center
- Considerable economic modeling and traveler acceptance testing
- 5 mile network project to serve 5.7 million trips per year
- 100% operating and significant capital cost recovery
- 348,000 person-hours/year reduction in congestion
- 8% increase in mode share
- Preferred deployment of PRT upon funding approval

PRT Industry Expert Survey

- Leading industry experts with at least 30 years of experience were surveyed through:
 - Questionnaire
 - Phone and in-person interviews
- Intent of survey was to gather:
 - Lessons learned from PRT history
 - Insight and guidance for the future of the technology
 - High level insights from senior level experts
- Survey focused on five key areas:
 - Development
 - Applications
 - Costs and Service
 - Performance and Standards
 - Technology

Industry Expert Survey - Results

- PRT is ready to proceed to final engineering and development
- Limited funds are available to support development
- Investors are hesitant to support new technology in a conservative market
- Alternative system configurations are being independently developed
- A full pilot system is needed to demonstrate effectiveness and gain market acceptance

Applications

- PRT can support urban transit needs across the globe
- Initial applications can support circulator and distribution functions
- Systems can expand to support larger networks and connection of initial networks

Costs and Service

PRT systems can expect to provide lower capital and comparable operating costs than current fixed rail or grade-separated transit systems

Performance and Standards

- Defacto and optimum technology standards will emerge
- Capacity, reliability, safety and security need to be demonstrated before large developments can be supported
- Governments will provide safety and security standards and oversight

Industry Expert Survey – Results: Technology

- PRT technology is not generally understood by the larger transportation planning and engineering community or by the general public
- The development of a PRT system is fully within the state-of-the-art and generally requires the engineering and application of proven technology
- The core technical elements of PRT control, communication, power and propulsion are commercially available
- The system engineering, design, testing and validation of a fully configured PRT system is needed
- Engineering design should include performance targets for system cost, reliability, safety, performance, scalability, and flexibility of implementation and operations
- A development, testing and validation program is needed with adequate capital funding and systems engineering approach that is not constrained to implementation before development is completed
- Larger scale systems will require more advanced engineering efforts but will not require fundamental research or technology development

Vendor Status - Ultra System

- Developed since 1995 in Wales by Advanced Transport Systems in conjunction with University of Bristol
- Strong European government and private partner support
- Currently operating a test track
- Recently selected for implementation at Heathrow airport with corporate investment from British Airport Authority
- **■** Technology Components:
 - Automotive form factor
 - Battery power, rotary motors
 - Moderate speed and capacity
 - Open guideway
 - Guided steering
 - Synchronous control system
 - Moderate application for cold climate operation

Vendor Status – SkyWeb Express System

- Developed since 1982 by Taxi 2000, including considerable research and systems engineering
- Original funding from the University of Minnesota with limited additional funding and partnerships formed with manufacturing firms
- Limited function prototype is currently available, but no test track
- Considered in many PRT studies over the past 20 years
- **Technology Components:**
 - Body on bogie form factor
 - Vehicle LIM propulsion, guideway power
 - High speed and capacity
 - Narrow enclosed guideway
 - On-board switch
 - Distributed asynchronous control
 - Suitable for cold climate operation

Vendor Status – Posco/Vectus System

- Developed since 2003 primarily funded by Posco Steel of Korea
- Initial partner in study for Fornebu in Oslo Norway
- Extended development program in cooperation with Korean universities
- Partnerships formed with European firms
- Currently developing a test track in Upsalla Sweden
- **■** Technology Components:
 - Body on bogie form factor
 - Guideway LIM propulsion
 - High speed and capacity
 - Open guideway
 - On-board switch
 - Distributed asynchronous control
 - Suitable for cold climate operation

Vendor Status - CabinTaxi System

- Developed in the 1970's with funding from German federal government
- System evolved from multiple design iterations involving advanced operating characteristics
- A fully operational test track with 24 vehicles was constructed and operated until 1980, demonstrating high reliability
- Cabinlift system operating since 1976
- Program cancelled in 1980 due to lack of federal funding. System is still actively marketed.
- Technology Components:
 - Body on bogie form factor
 - Vehicle LIM propulsion, guideway power
 - Moderate speed and capacity
 - Enclosed over/under guideway
 - On-board switch
 - Distributed asynchronous control
 - Suitable for cold climate operation

Vendor Status - Other Current PRT Developers

EcoTaxi – Finland

- Partner with Kone Elevator
- Developing design

Oceaneering – Florida

- Responding to Destiny Program
- Developing prototype

Micro Rail – Texas

- Privately funded
- Mix of vehicle configurations

■ Frog/2getthere/Park Shuttle

- Automated guided vehicle
- Several implementations

Austrans

Group Rapid Transit

PRT Lessons Learned

Design is critical

- Performance requirements should rigorously dictate the design
- The overall design and integration of features is a critical success factor
- Picking a design before complete alternatives analysis is potentially fatal
- Design needs to be safe, reliable, economic, attractive, low impact, high performance and scalable to larger networks

Required technology

- Advanced control and communication systems are required to deliver safety, reliability, and high levels of performance
- Short headways and advanced network management systems are needed to provide capacity
- Consistent levels of propulsion and braking are needed to provide high capacity
- On-board switching or guidance is critical

Careful development is needed

- Alternatives analysis requires time, patience and sufficient funding
- Final design, systems engineering and testing is needed
- Development should not be constrained by deployment deadlines
- Adequate funding and consistent political support is critical

PRT State-of-the-Industry

ULTra, CabinTaxi, Raytheon, CVS, Morgantown, Aramis

Current prototype development

Vectus, SkyWeb Express, Microrail, Coaster, Ecotaxi/Kone

Readiness

- Significant research, engineering, development and application studies for over 40 years
- Past efforts provide a solid foundation for final engineering and development
- Advanced technology components are proven and ready to support an integrated PRT system design
- An optimum configuration and viable vendor base has not been established

Acceptance

 Cities and regions continue to display interest in PRT and select as preferred alternative but disqualify PRT due to lack of proven technology

Research and development

- Developers are limited due to lack of market acceptance and financial backing
- Korean, Swedish and British development programs underway

Current application interest and procurements

Great Britain; United States; Dubai, UAE; Korea; Europe

PRT Performance Comparison – Average Speed

- Average speed is determined by line speed, number of stops, distance between stops, dwell time at stops, and trip length
- PRT systems can achieve an average speed of 20-25 mph with line speed of 25-30 mph due to non-stop trip
- PRT trips can be 80-100% faster than a typical bus trip
- PRT trips can be 20-30% faster than a typical heavy rail trip
- All else being equal, higher average speed can result in higher patronage

Source: 2005 APTA Fact Book

PRT Performance Comparison - Capacity

- Line capacity is determined by headway, vehicle capacity and load factor
- PRT systems can have comparable line capacity with bus and light rail if safe and reliable short headway operation is achieved
- PRT systems can have higher overall system capacity when multiple lines and network layouts are considered with comparable total costs

Source: TCRP Transit Capacity Manual

PRT Capital Cost Comparison

- Capital costs are highly specific to location, line layout, number and complexity of stations
- The design of PRT systems, with small vehicles and guideways, can support lower capital costs than other exclusive, gradeseparated, fixed guideway rail systems
- PRT costs can be expected to be comparable with exclusive rightof-way BRT systems
- Lower capital costs would be primarily due to:
 - Smaller guideway and stations
 - Reduced civil work and right-ofway acquisition

	Capital Cost/Mile (\$M)		
Mode	Low	Average	High
Metro Rail	\$110	\$200	\$2,000
Light Rail	\$25	\$50-\$70	\$195
APM – Urban	\$30	\$100-\$120	\$145
APM - Airport	\$49	\$100-\$150	\$237
BRT Busway	\$7	\$14-\$25	\$50
BRT Tunnel	\$200	\$250	\$300
PRT One Way	\$15	\$20-\$25	\$40
PRT Two Way	\$20	\$25- \$30	\$50

Sources: Kerr-2005, TCRP -R90, GAO - BRT 2000, Vendor Estimates, Case Studies

Operating and Maintenance Costs

- Operating and maintenance (O&M) costs per passenger-mile are highly dependent on ridership, system efficiency and system scale
- PRT systems can be expected to offer comparable O&M costs to heavy and commuter rail if deployed effectively and to moderate scale
- PRT systems can be expected to demonstrate lower O&M costs than current automated people mover (APM) systems at airports and the Morgantown PRT (M-PRT) due to:
 - Higher expected levels of automation
 - Greater use of modern and standardized components
 - Simplified design and mechanical wear reductions
 - Reduced energy use
- PRT systems could be expected to experience comparatively high O&M costs if deployed in limited service areas with small patronage demand

O&M Cost Comparison

O&M Cost Per Passenger Mile

Source: 2005 APTA Transit Fact Book, NJT, FTA, Case Studies, PRT Vendors

O&M Cost and Revenue Per Trip Comparison

- Transit O&M cost recovery is 34% nationally
- PRT systems can be expected to recover a higher percentage of O&M costs if fares reflect per mile O&M cost
- PRT in a moderate scale application can expect to break even on operating costs for an average four mile trip and average fare of \$1.60

Source: 2005 APTA Transit Fact Book, NJT, FTA, Case Studies, PRT Vendors

Challenges to Implementation

- Limited depth of experience in the industry
- Need to draw upon expertise in related industries such as Aerospace, Automotive, Defense, Computing and Networking

Open technology development

- Avoid proprietary designs and vendor exclusivity
- Use of commercially available components

Development and application of standards

- Safety
- Security
- Technical
- Institutional framework to deal with design, safety and security issues
- Consistent and appropriate political, economic and technology support

Options for Government Support of PRT Development

Option 1 – Monitoring and Support

- Monitor current private technology developments and consider participation in the future as PRT technology development advances
- Endorsement of the technology development and consideration for alternatives analysis

Option 2 – Research and Analysis

- Participate in research and analysis activities that advance development, implementation and operation of PRT systems
- Quantify economic and transportation benefits

Option 3 - Detailed Application Studies

- Conduct initial application studies for future implementation of PRT systems
- Define cost, performance, ridership, layout, impact analysis, and public outreach for one or more potential applications

Options for Government Support of PRT Development

Option 4 - Public/Private Development Program

- Public/private partnership structured to develop and implement PRT technology for the US and world-wide applications
- Shared risk and reward program with potentially multiple public and private partners
- \$50-\$100 million comprehensive program involving:
 - Public outreach and initial application studies
 - Development of performance requirements; initial operation and safety standards; acceptance, social and economic criteria
 - Analysis, design, development and testing of technology
 - Pilot system demonstration
- Limited risk with program performance requirements
- Establish industrial and research base in host region
- Potential private partners with previous interest:
 - Bombardier, Siemens, Lockheed Martin, General Electric, Oceaneering, Kone, Alcatel, Honeywell, Northrup Grumman

Benefits to Support PRT Development

- High level of service that can potentially attract drivers from their cars and help relieve congestion
- Lower capital and operating costs than other fixed rail options
- Lower right-of-way requirements and opportunity to integrate and expand existing transportation systems with potentially reduced urban disruption
- Reduced energy use and environmental impact
- Increased safety and security
- A business model that:
 - Can reduce government transit capital and operating investments through private development
 - Can increase the use of private firms for operations and maintenance
- An opportunity for economic development:
 - Supporting new implementations
 - A new manufacturing, support and operations industry

Vision for the Future PRT - The Network Model

- PRT has the opportunity to develop a new business model with the potential to SCALE beyond the limited access of fixed guideway transit
- The model is founded on the success of other commercial network businesses such as:
 - Telephone
 - Internet
 - Cell Phones
 - Cable
- These network industries are founded on several fundamental principles:
 - Open standards
 - Mass production and economies of scale
 - Multiple suppliers and providers
 - Government regulation of public access and right of way
 - Market pricing
 - Open competition
 - Private funding
- Transit can also follow these network successes if the fundamentals are applied to a common technology

The Internet Example

- TCP/IP protocol allowed all manufacturers to build to a common standard that allowed different devices and software products to work on a common network.
- Mass production, competition and division of providers
 - Backbone Trunk Lines
 - Devices
 - Software
 - Customer Access
 - Billing
 - Administration
 - Content Providers
- Limited regulatory government involvement

The Internet: On Demand Information, Anytime, Anywhere

PRT Standards

- Vehicle Guideway Interface
- Power
- Propulsion
- Control and Communication
- Ticketing
- Safety, Security
- Development of standards can occur:
 - As de facto from the industry leading technology
 - In cooperation with public agencies, federal government, associations, and manufacturers

Standards allow competition and mass production to occur resulting in:

- reduced costs
- increased quality
- market certainty

Public/Private Implementation and Operating Model

- Structured to be a distributed, self-promulgating model similar to the Internet, Cable or Cellular
- Elements of an integrated business model
 - Regulator Agency
 - Developers
 - Service Operators
 - Vehicle Operators
 - Manufacturers
- Regulatory agency:
 - Sells or grants public access/right-of-way
 - Oversee standards compliance
 - Insure safety, security, equal access
 - Manage fare policy and costs of developer/service provider
 - Manage central operations provider

Development Funded Capital Expansion

Developers

- Granted air-rights to install guideways in specific regions
- Multiple developers with adjoining regions provide connectivity between networks
- Contract with manufacturers to build and install guideways
- Sell station rights to local developers to install stations and off-line guideways as an aid to development
- Contract with central operations provider for system management and control
- Value capture from capital appreciation or revenue from increased land value and real estate development

Operators Contract to Provide Services

Service Operators

- Provide command and control functions
- Supervise overall control of system
- Insure vehicles and guideway sections are performing to standards

Vehicle Operators

- Multiple providers are allowed to operate vehicles
- Similar to access providers for the internet
- Contract with manufacturers to build vehicles
- Contract with service operators for access to systems

Manufacturers

- Build components such as control, vehicles and guideways to standards
- Compete on design, cost, efficacy, reliability, performance

Summary - PRT Private Network Business Model

- PRT can evolve from a public system to a private utility business model
- PRT networks can be based on standards similar to internet and cell phone networks
- Model based on franchise rights where developers build and operate integrated networks
- Government serves in a regulator role
- Vehicle operators provide service on franchised networks
- **■** Funded from private and public sources:
 - Fare revenue
 - Value capture from real estate development
 - Right of way fees
 - Advertising and entertainment fees
 - Station services
 - Supplemental public support

